Use of hydrochloric acid for determinining solid-phase arsenic partitioning in sulfidic sediments.

نویسندگان

  • Richard T Wilkin
  • Robert G Ford
چکیده

We examined the use of room-temperature hydrochloric acid (1-6 M) and salt solutions of magnesium chloride, sodium carbonate, and sodium sulfide for the removal of arsenic from synthetic iron monosulfides and contaminated sediments containing acid-volatile sulfides (AVS). Results indicate that acid-soluble arsenic reacts with H2S released from AVS phases and precipitates at low pH as disordered orpiment or alacranite. Arsenic sulfide precipitation is consistent with geochemical modeling in that conditions during acid extraction are predicted to be oversaturated with respect to orpiment, realgar, or both. Binding of arsenic with sulfide at low pH is sufficiently strong that 6 M HCl will not keep spiked arsenic in the dissolved fraction. Over a wide range of AVS concentrations and molar [As]/[AVS] ratios, acid extraction of arsenic from sulfide-bearing sediments will give biased results that overestimate the stability or underestimate the bioavailability of sediment-bound arsenic. Alkaline solutions of sodium sulfide and sodium carbonate are efficient in removing arsenic from arsenic sulfides and mixed iron-arsenic sulfides because of the high solubility of arsenic at alkaline pH, the formation of stable arsenic complexes with sulfide or carbonate, or both.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controls on arsenic speciation and solid-phase partitioning in the sediments of a two-basin lake.

Arsenic (As) regeneration from sediments of Spy Pond, a two-basin lake near Boston, MA, continues to result in seasonally elevated As levels despite the several decades that have elapsed since the pond's historical contamination by a pulse input of As. Solid-phase speciation and partitioning of As in the sediments appear to be primary determinants of both potential As regeneration rate and, con...

متن کامل

Arsenic in marine sediments from French Mediterranean ports: geochemical partitioning, bioavailability and ecotoxicology.

This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Sa...

متن کامل

Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.

The arsenic contamination of aquifers has been linked to the input of dissolved organic matter (DOM). In light of this suggestion, the aim of this study was to quantify chemical effects of DOM on desorption and redox transformations of arsenic bound to synthetic iron oxide and natural samples from different geochemical environments (soils, shallow aquifer, lake sediment). In batch experiments, ...

متن کامل

Simulation of arsenic partitioning in tributaries to drinking water resevoirs.

Arsenic released by bottom sediments was determined by experiments in which the sediments were artificially re-suspended using a particle entrainment simulator (PES) to simulate river conditions. Sediment cores were collected from various tributaries to drinking water reservoirs in Connecticut spiked with arsenic, and run in the PES at simulated bed-flow shear stresses from 0.0 to 0.6 N/m(2). U...

متن کامل

Hydrolysis of Sorghum (Broomcorn) in Diluted Hydrochloric Acid

Effective conversion of lignocellulosic material as renewable energy source has significant reflection on economic and environmental impact. Diluted acid hydrolysis at optimal condition was used to liberate fermentable sugar. The sorghum stalks, the alkali pretreatment of biomass and hydrolysis in diluted hydrochloric acid were investigated. The hydrolysis reaction was carried out in a 5L react...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 36 22  شماره 

صفحات  -

تاریخ انتشار 2002